## Lösungen

zu1.

Schalter zu  $\rightarrow$  Strom fließt durch die Spule 1  $\rightarrow$  Magnetfeld entsteht  $\rightarrow$  Blattfeder wird angezogen  $\rightarrow$  Stromkreis wird geöffnet  $\rightarrow$  kein Magnetfeld mehr vorhanden  $\rightarrow$  Blattfeder geht nach oben  $\rightarrow$  Stromkreis geschlossen  $\rightarrow$  Magnetfeld usw.

Da sich das Magnetfeld ständig ändert und Spule 2 sich in diesem Magnetfeld befindet, wird in der Spule 2 eine Wechselspannung induziert.

zu2.

Zwei Spulen befinden sich gegenüberliegend auf einem geschlossenen Eisenkern. Die Spule, die an der Stromquelle angeschlossen ist, heißt *Primärspule*. die Spule, in die der Strom induziert wird, heißt *Sekundärspule*. Zwischen Primärspule und Sekundärspule gibt es keine elektrische Verbindung. Durch Wechselstrom in der Primärspule ändert sich ihr Magnetfeld ständig, dieses umfasst die Sekundärspule in der eine Wechselspannung induziert wird.

zu 3.

geg.:  $I_2 = 550A$ 

ges.:  $I_1$  und  $U_2$ 

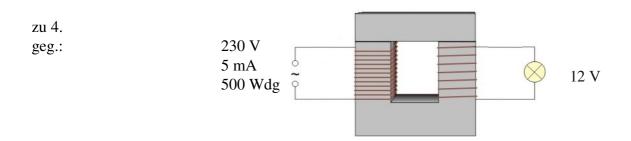
 $U_1 = 360 \text{ V}$ 

 $N_1 = 1000 \text{ Wdg}$ 

 $N_2 = 5 \text{ Wdg}$ 

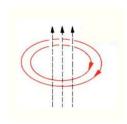
Lösung :  $N_1 : N_2 = 200$ 

 $\rightarrow$  U<sub>1</sub>: U<sub>2</sub> = 360 V : 1.8 V


 $\rightarrow$  I<sub>2</sub>: I<sub>1</sub> = 550 A: 2,75 A

Transformator

500 A
5 Wdg


360 V
1000 Wgd

Antwort: Die Sekundärspannung beträgt 1,8 V und die Primärstromstärke 2,75 A.



Lösung:

$$U_1: U_2 = 230 \text{ V}: 12 \text{ V} \rightarrow 19: 1 \rightarrow 5 \text{ mA} * 19 = 95 \text{ mA} \rightarrow 95 \text{ mA} * 0.95 = 91 \text{ mA} = I_2$$

